Блог Гадского Папы
Ахтунг!
  • ИКС

    Поделись
    Поделись с другом
    Меню сайта
    Категории раздела
    Мои рассказы [6]
    Навеянное книгами и играми серии Сталкер
    Чернобыльская Зона Отчуждения [201]
    О Припяти, про аварию на АЭС, про ликвидаторов аварии и про нелегалов сталкеров
    Интересное [97]
    Не только о Чернобыльской Зоне Отчуждения
    Юмор [4]
    Сталкеры шутят
    Не в тему [16]
    Интересные случаи
    Как это было. Александр Наумов [5]
    Попытка написания сценария...
    Чернобыль глазами солдата [3]
    Мемуары
    Зарево над Припятью [12]
    Дмитрию Биленкину - писателю и другу - посвящаю. (Владимир Губарев) Людям, кто не в теме, оброс толстой "урбанистической" кожей и не понимает жизни в маленьком городке, думает, что мир "вращается вокруг него" и "это было давно и неправда" - читать ... рекомендуется
    Игровой мир [14]
    На тему игры Сталкер и не только....
    Темы форума
  • Моды Zaurus'crew (22)
  • Сергей Есенин (20)
  • Спавнеры (5)
  • Alternative epilogue (0)
  • История Прибоя - Скрытая Угроза (1)
  • Боевая Подготовка (6)
  • Нужное и полезное (4)
  • Персонажи из S.T.A.L.K.E.R и их прототипы (31)
  • Выживание и оружие (6)
  • Смешные истории (3)
  • >
    Наш опрос
    Хочу в Припять!
    Всего ответов: 62
    Статистика публикаций
    Комментарии: 254
    Форум: 32/236
    Фото: 285
    Блог: 362
    Новости: 29
    Загружено: 16
    Публикаций: 15
    Видео: 46
    Гостевая: 7
    Контакты!
  • Связь с администрацией
  • Статистика

    Онлайн всего: 4
    Гостей: 4
    Пользователей: 0



    Главная » 2018 » Ноябрь » 8 » Как взорвать реактор РБМК
    01:15
    Как взорвать реактор РБМК
    Прежде всего хочу извиниться перед читателями, для которых изложение хода аварии на ЧАЭС уже известно - вряд ли я расскажу что-то новое. Тем не менее некоторые нюансы могут быть интересны всем.



    Итак, для того, что бы разобраться в причинах взрыва на Чернобыльской АЭС, сначала нужен минимальный ликбез по нейтронной физике.

    Основные два термина, которые нужны для понимания, как живется ядерному реактору - это критичность и реактивность. Критичность - это стационарное состояние потока нейтронов, когда каждую секунду в реакторе происходит одинаковое количество делений ядер урана 235 и/или плутония 239, причем неважно какое именно это количество. Каждый поделившийся после поглощения атом U235 испускает еще в среднем 2,3 нейтрона, один из которых в свою очередь делит следующее поколение атомов, продолжая цепочку, а остальные улетают наружу или поглощаются без деления.



    Реакторная установка РБМК-1000 в духе картинок журнала Nuclear Engineering, только победнее :)

    Кроме как критичным, состояние реактора может быть над- и подкритичным, соответственно, когда нейтронов в каждом следующем поколении больше единицы или меньше. Эти отличия от стационарного состояния вызываются реактивностью, положительной или отрицательной. Т.е. реактивность - это отличие критичности от единицы :), и выражается она обычно в небольших долях - например процентах.

    Важно понять, что критичность и реактивность - это слегка не интуитивные свойства ядерного реактора, не связанные напрямую с мощностью. Критичность может быть на любой мощности, а ввод реактивности вызывает изменение мощности - опять же с любого уровня на любой.

    Наконец, заканчивая ликбез по нейтронной физике реактора нужно вспомнить о мгновенных и запаздывающих нейтронах. Коротко - “поддувать” реактор можно только регулируя его реактивность в рамках доли запаздывающих нейтронов (а это всего 0,65% для урана 235), так как выход за эти рамки ведет к резкому ускорению нарастания мощности. Например, если мы ввели не 0,65% а 0,66% реактивности то время удвоения мощности изменится кардинально - с ~20 минут до 10 секунд. Для реактивности, равной доле запаздывающих нейтронов применяют специальную букву — 0,64% = 1 β.

    Теперь, после этого мини-ликбеза перейдем к событиям 1986 года, попутно разбираясь во всяких физических явлениях и инженерных явлениях.



    Структура реактора РБМК. Сверху биозащита, ниже пароводяные отводы от технологических каналов, еще ниже верхняя металлическая плита (схема "Е"), еще ниже активная зона и в самом низу система подачи воды в реактор (схемы "ОР" и "С").

    В апреле 1986 года на 4 блоке Чернобыльской АЭС был запланирован эксперимент по использованию тепловой и механической инерции энергоблока для аварийного питания собственных нужд блока на случай аварии. Питание это может пригодится в случае обрыва или выключения ЛЭП от станции до единой энергосистемы, а использование инерции теоретически помогает пережить момент от обесточивания до запуска резервных дизель-генераторов (что занимает примерно 30 секунд). История этого злосчастного эксперимента вообще довольно своеобразна. Инерция ротора турбогенератора как запасной источник энергии появилась в голове разработчиков в процессе создания РБМК-1000, но при конкретной реализации оказалось довольно бессмысленной. Тем не менее она попала в эксплуатационные документы, а раз она там есть - этот режим надо испытать, правильно? Итак, в 26 апреля 1986 года этот режим работы планировалось в 4 раз (три предыдущих были неудачными по разными причинам, не связанным с атомным реактором, например в 1985 году забыли включить регистрирующие осциллографы) испытать на выводящемся на перегрузку 4 блоке.



    Скан первой страницы предыдущей попытки программы испытаний на выбег в 1985 году.

    Эксперимент заключался в отключении внешнего питания от блока, подключения главных циркуляционных насосов (ГЦН) - а это основная нагрузка собственных нужд к турбогенератору №8 (всего у каждого реактора РБМК-1000 два турбогенератора, у блока 4 соответственно №7 и №8), перекрытие подачи пара с реактора на турбину и наблюдение за тем, как выбегающий ротор обеспечивает энергией ГЦНы, пока не запустятся дизель-генераторы и не возьмут на себя нагрузку.

    Испытание режима выбега в одном отношении принципиально отличается от выбега, автоматически возникающего в случае реальной аварии, сопровождающейся обесточиванием собственных нужд. Во втором случае выбег проходит при заглушенном реакторе, и это заглушение не зависит от работы автоматики выбега или каких-либо действий персонала АЭС, оно происходит автоматически от срабатывания аварийной защиты реактора по факту аварии. Реактор в этом процессе выбега выступает лишь как источник остаточного тепловыделения. В первом случае аварии на самом деле никакой нет, и защита реактора автоматически не срабатывает. Сигнал аварии формируется искусственно, и реактор может быть заглушен только принудительно. В этом случае, в отличие от предыдущего реактор является источником ядерной (катастрофической) опасности.



    Центральный реакторный зал 4 блока после взрыва. Правее центра видна схема Е.

    Почему важны эти факты? Из-за йодной ямы - эффекта изменения изотопного состава осколков деления при снижении мощности любого реактора, которое вносит постепенно увеличивающуюся отрицательную реактивность. Это называют еще “отравлением реактора” и заставляет постепенно извлекать поглощающие стержни, для того что бы мощность не пошла вниз. Эффект йодной ямы нарастает постепенно, достигая максимума через 11 часов после снижения мощности, что означает, что к моменту аварии реактор подойдет с большой отрицательной реактивностью - и это станет первым элементом в цепи причин аварии.



    Разрешение на разгрузку энергоблока получено только к 23 часам и снижение мощности (с 50%) было начато в 23:10 25.04.86  Мощность, установленная в программе испытаний (700 МВт) была достигнута к 00:05 26.04.86. Далее согласно программе испытаний необходимо было включить в работу два ГЦН (в нормальной работе используется 6 из 8 ГЦН реактора), и приступить к выполнению основной части программы. Однако, этого не произошло, и все дальнейшие действия оперативного персонала АЭС были сплошной импровизацией между программой и реальной обстановкой на энергоблоке.

    На этом месте стоит остановится и поговорить об основной теме расследования чернобыльской катастрофы: противостояния конструктора реактора и его эксплуатации. Проблема в том, что вину приходится делить между двумя этими сторонами и никак не получается полностью отбелить кого-то из участников, однако попытки такие начались с первых дней и не закончились и поныне. Фраза выше про импровизацию (вещь, недопустимая при работе с ядерными энергоустановками) и, например, такие факты, как отключение системы аварийного охлаждения реактора за 11 часов до испытаний (в место положенного часа) говорят далеко не в пользу эксплуатации, т.е. персонала станции. Однако дальше будет много проблем и с конструкторами РБМК. Продолжаем.

    Кроме программы испытаний выбега турбогенератора должна была быть выполнена еще одна работа: измерение вибраций турбины на холостом ходу турбогенератора.



    Это современный вид БЩУ РБМК-1000 (Курская АЭС), вид на место старшего инженера управления реактором (СИУРа).

    Эти две работы, в общем-то, противоречат друг другу. Обе они требуют разгрузки турбогенератора, т.е. отключения его от внешней сети, но в одном случае разгрузка полная, до холостого хода (т.е. без выработки какой-либо электроэнергии), а в другом случае разгрузка только до уровня собственных нужд. В первом случае обороты холостого хода поддерживаются за счет (небольшой) подачи пара на турбину, и реактор для этого нужен, во втором случае пар не подается, и реактор не нужен, а обороты под нагрузкой собственных нужд сравнительно быстро падают.

    В программе испытаний такая коллизия не была предусмотрена. Тем не менее, как пишет руководитель испытаний (и составитель программы) А.С. Дятлов в своих воспоминаниях ему "было здесь все ясно. И по подготовке к последнему эксперименту у А.Акимова нет вопросов, он еще 25 апреля смотрел".

    Затем А.С. Дятлов временно (в 00ч.05мин.) покидает БЩУ, предоставив начальнику смены блока А.Акимову самому разбираться с тем, что им обоим было так ясно.



    А это дизель-генераторы, такие же, как на ЧАЭС, подхват нагрузки которыми во время испытаний 26 апреля 1986 года совпал с моментом разрушения реактора.

    Тем временем начато дальнейшее снижение мощности реактора, до мощности в 200 тепловых мегаватт, необходимых для вибрационных испытаний. В 00 ч 28 мин при тепловой мощности реактора около 500 МВт допущено непредусмотренное программой снижение тепловой мощности до 30 МВт (нейтронной мощности — до нуля); после паузы продолжительностью 4-5 мин начат подъем мощности. Этот момент тоже сыграет свою роль через снижение количество поглощающих стержней к моменту аварии.



    При таком отношении к "рабочим программам" и к своим "должностным инструкциям" все дальнейшие смертные грехи, в которых обвиняют персонал, это просто детские шалости, не заслуживающие внимания.

    Работа реактора на малом уровне мощности при малом запасе реактивности сопровождалась неустойчивостью теплогидравлических параметров и возможно неустойчивостью нейтронного поля. Об этом свидетельствуют многократные аварийные сигналы по уровню в барабане сепараторе (БС), срабатывания системы быстрого сброса лишнего пара БРУ-К, большие перерегулирования в расходе питательной воды (т.е. холодной воды, возвращающейся от конденсаторов турбины в контур реактора), и выходы из строя автоматичесих регуляторов нейтронной мощности. Именно поэтому в период с 00:35 по 00:45, видимо, чтобы сохранить реактор на мощности, были заблокированы аварийные сигналы по теплогидравлическим параметрам КМПЦ (и сигнал АЗ-5 по отключению 2-х ТГ). В 01ч.16 мин закончились работы по замеру вибраций, и турбогенератор был снова включен в сеть (для последующего выполнения программы выбега).



    Турбогенератор типа К-500-65, стоявшие на ЧАЭС.

    Испытания по выбегу турбогенератора было решено начать, видимо, в 01:23:00. К этому моменту энергоблок подошел со следующими параметрами:

    Тепловая мощность реактора 200 МВт;

    Электрическая мощность 40 МВт;

    Давление в КМПЦ ВК 63/64 кг/см2;7

    Температура воды на входе в ГЦН 280.8/283.2 С.

    Третья строчка показывает давление в контуре охлаждающей воды, принудительно циркулирующей в РБМК-1000 (КМПЦ - контур многократной принудительной циркуляции, цифры через дробь - левая/правая половина реактора) и оно ниже номинала. Температура воды (следующее строчка) близка к закипанию при этом давлении, на 20 градусов выше номинала. Это сыграет ключевую роль в развитии аварии.

    Итак, испытания начались. В 01:23:04 закрыты стопорные клапана ТГ-8, и начался совместный выбег турбогенератора ТГ-8 с ГЦН №.13,14,23,24. Включение в работу дизель-генератора и ступенчатый набор нагрузки закончилось к 01:23:44 и в течение этого времени электроснабжение указанных ГЦН осуществлялось за счет выбега турбогенератора.



    Остатки технологических каналов и графитовой кладки на периметре АЗ 4 блока АЭС.

    Наконец, видя успешное завершение эксперимента по выбегу операторы  нажимают в 1:23:40 кнопку ввода АЗ-5 (аварийной защиты реактора), после чего все 191 поглощающих стержня СУЗ, практически полностью извлеченных к этому моменту из реактора начинают идти вниз. Это становится последней каплей - за несколько секунд происходит развитие аварии, после чего мощным взрывом реактор и значительный кусок здания раскидывает по окрестностям.



    Надо отметить, что эксперимент удался, и выбегавший ТГ поддержал расход охлаждающей воды через реактор. Но побочные эффекты в виде взрыва блока препятствовали дальнейшему внедрению подобной технологии в практику других АЭС с РБМК.

    Прежде чем перейти к подробному разбору, что же произошло в активной зоне, приведу длинную цитату участника тех испытаний, заместителя начальника турбинного цеха 4 блока  Р.И. Давлетбаева

    -Акимов запросил операторов о готовности, после чего представитель испытаний от предприятия «Донтехэнерго» Метленко скомандовал: «Внимание, осциллограф» пуск».

    По этой команде Киршенбаум закрыл стопорные клапаны турбины, я стоял рядом с ним и наблюдал по тахометру за оборотами ТГ-8. Как и следовало ожидать, обороты быстро падали за счет электродинамического торможения генератора. (Я описываю только события, касающиеся турбинного цеха, на котором было сосредоточено мое внимание, хотя оперативные действия выполнялись в основном по блочному оборудованию). Когда обороты турбогенератора снизились до значения, предусмотренного программой испытаний, генератор развозбудился, т. е. блок выбега отработал правильно, прозвучала команда начальника смены блока Акимова заглушить реактор, что и было выполнено оператором блочного щита управления.

    Однако, как впоследствии выяснилось, несмотря на начавшееся движение вниз поглощающих стержней, произошел неконтролируемый разгон реактора. Через некоторое время (сколько секунд прошло - не запомнил) послышался гул. Работая на АЭС на разных должностях, я не раз оказывался в различных нештатных ситуациях, в том числе и сопровождающихся сильными шумами. Но этот гул был совершенно незнакомого характера, очень низкого тона, похожий на стон человека. О подобных эффектах рассказывают обычно очевидцы землетрясений и вулканических извержений. Сильно шатнуло пол и стены, с потолка посыпалась пыль и мелкая крошка, потухло люминесцентное освещение, установилась полутьма, горело только аварийное освещение, затем сразу же раздался глухой удар, сопровождавшийся громоподобными раскатами. Освещение появилось вновь, все находившиеся на БЩУ-4 были на месте, операторы окриками, пересиливая шум, обращались друг к другу, пытаясь выяснить, что же произошло, что случилось.

    Дятлов, находившийся в это время между столом начальника смены блока и панелями систем безопасности, громко скомандовал: "Расхолаживаться с аварийной скоростью!" Первое, что пришло мне в голову, это мысль, что взорвался деаэратор, находящийся над БЩУ-4, однако, осмотрев самописцы уровней и давления в деаэраторах, я понял, что дело не в них. Это меня несколько успокоило, потому что к этому моменту основное оборудование турбинного цеха было уже отключено и опасений, как будто, не вызвало. И напрасно, В этот момент на БЩУ-4 вбежал машинист паровой турбины (МПТ) Вячеслав Бражник (умер от лучевой болезни в 6-й клинической больнице в мае 1986 г.) и громко крикнул: «В машзале пожар, вызывайте пожарную машину», и тут же без дальнейших объяснений убежал обратно в машзал. За ним побежал я и сразу же у входа в машзал увидел свисающие куски железобетона и обрывки металлоконструкций. Держась ближе к стене, я вышел на площадку отметки +12,0 ТГ-8.

    Вот что я увидел. Кровля над турбиной № 7, а также по ряду "Б" над питательной системой, над шкафами электрических сборок арматуры ТГ-7, над помещением старшего машиниста была местами проломлена и обрушена. Часть ферм свисала, одна из них на моих глазах упала на цилиндр низкого давления ТГ-7, Откуда-то сверху доносился шум истечения пара, хотя в проломы кровли не было видно ни пара, ни дыма, ни огня, а видны были ясные светящиеся звезды в ночном небе. Внутри машинного зала на различных отметках возникли завалы, состоящие из разрушенных металлоконструкций, обрывков кровельного покрытия и железобетона. Из-под завалов шел дым. Наиболее крупный завал образовался на цилиндрах и по бортам седьмой турбины. В окнах машзала по ряду «А» выбило много окон, стекла высыпались на проходы отм. +12; 0.0. Потолочное освещение в ячейке ТГ-7 не горело. Из раскрытого от повреждения фланца на всасывающем трубопроводе питательного насоса 4ПН-2 била мощная струя горячей воды и пара, доходящая до стены конденсатоочистки. Сквозь клубы пара были видны сильные всполохи огня на площадке питательных насосов отм. +5.0, причем красные цвета перемежались с фиолетовыми. Что там горело, я рассмотреть не смог, приблизиться близко к струе было невозможно — обдавало горячим паром. От всех завалов, в том числе от маслосистемы смазки и регулирования, от цилиндра высокого давления, от частично заваленного главного маслоблока вверх шел дым.



    Разрушенный машзал и турбогенераторы 4 энергоблока.

    Но вернемся на 10 минут назад, к нажатию кнопки АЗ-5. Наиболее правдоподобная версия взрыва реактора выглядит так:

    1. Неудачная конструкция поглощающих стержней, которые имею в нижней части графитовый цилиндр (это нужно, что бы вытеснять воду из рабочего канала СУЗ, что в свою очередь снижает паразитное поглощение нейтронов, пока стержень поднят) приводит к тому, что при движении вниз в верхней части активной зоны вводится отрицательная реактивность, а в нижней - положительная, до 0,6 β. Само это явление не катастрофично, если бы не еще одна особенность РБМК.



    2. Положительный паровой коэффициент реактивности (ПКР), т.е. появление в реакторе положительной реактивности при росте количества пара в теплоносителе. Интересно, что выбранный шаг решетки каналов (25 см) имел положительный ПКР, а меньший (20 см) и больший (30 см) - нет. Так вот, в обычных условиях пар появляется в текущей воде в верхней трети активной зоны, но загнав реактор в ненормальные условия по температуре и давлению теплоносителя операторы добились подкипания воды практически на входе в АЗ (снизу). Кроме того, важной оказалась малая мощность РБМК, что увеличивает значение ПКР из-за развала активной зоны на несколько слабо связанных “реакторов” (из-за общего снижения нейтронного потока).



    ТВС РБМК-1000





    И конструкция твэла. Между топливными таблетками (2) оставлены полости для выхода газообразных продуктов деления (ГПД), в т.ч. гелия и ксенона. Рабочее давление ГПД - 17 атмосфер.

    3. Сочетания этих двух факторов привели в первые секунды ввода стержней АЗ к образованию локального “пузыря” надкритичности, где произошел разгон на мгновенных нейтронах. Однако с ростом температуры топлива его реактивность падает, поэтому мощность рисует “акулий плавник”. Тем не менее разогретые за секунду до нескольких тысяч градусов  таблетки разрушаются, а за ними лопается и твэл. Подобная авария уже произошла 13 декабря 1975 года на Ленинградской АЭС, но там температура и давление воды не дали произойти аварии такого же масштаба, как на Чернобыльской АЭС в 1986.

    4. Выброшенное из ТВС топливо прожигает циркониевые стенки технологических каналов - вертикальных трубок диаметром 80 мм, которыми пронизан РБМК, в которых находятся ТВС, ходят стержни СУЗ и т.п. - всего их в реакторе 1661 штука. Происходит разгерметизация тракта теплоносителя и начинается его бурное кипение в графитовую кладку. При этом обезвоживание каналов продолжает вносить положительную реактивность, поддерживая энерговыделение в разрушенных технологических каналах. Но хуже другое:

    Ввод положительной реактивности системой СУЗ на ЧАЭС - тормоза, которые разгоняют. Из отчета МАГАТЭ INSAG-7.

    5. Нарастающее давление пара в реакторной кладке приподнимает верхнюю плиту пароводяных коммуникаций (так называемую “схему Е”) и биозащиты весом 3000 тонн, и обрывает все остальные трубы технологических каналов. Похоже, что именно этот момент был слышен в комнате управления как “низкий звук, похожий на стон”

    6. Происходит бурное вскипание теплоносителя во всех каналах реактора, вбрасывающее большое количество положительной реактивности - и весь реактор разгоняется на мгновенных нейтронах, за секунду развивая мощность в тераватты.

    7. Через долю секунды вся эта мощность перестает выделятся из-за потери геометрии реактора и отрицательных температурных коэффициентов реактивности, но за это время успеет выделится по разным оценкам 100-200 гигаджоулей ядерной энергии, которые пойдут разными путями разрушать энергоблок. Темп событий вновь обретет человеческий масштаб.



    Запись разговоров пожарной диспечерской ночью 26 апреля 1986 года

    Возвращаясь к политике, надо заметить, что такой порядок происшествия отрицался и до сих пор отрицается разработчиком реактора - институтом НИКИЭТ, который пытается сделать главным виновником не стержни АЗ, а кавитацию ГЦН  (т.е. остановку подачи охлаждающей воды) в результате действий персонала. Тем не менее, положительный паровой коэффициент реактивности в любом случае - вина конструкторов.

    В следующей части я расскажу про менее известную и где-то более интересную операцию по ликвидации последствий чернобыльской аварии, а пока список изменений, которые были внесены в реакторы РБМК по итогам расследования:

    1. Введена схема запоминания сигнала АЗ-5 на 40сек. после срабатывания.
    2. Модернизированы стержни СУЗ (вытеснитель 7-ми метровый – нет «концевого» эффекта).
    3. По сигналу АЗ-5 в зону идут ВСЕ стержни, включая УСП (укороченные – вводятся снизу).
    4. Увеличена примерно в 1,5 раза скорость движения стержней в зону при АЗ-5.
    5. Внедрена быстродействующая аварийная защита БАЗ – 24 стержня БАЗ, суммарной эффективностью не менее 2-х бета, вводятся за время не более 2.5 сек.
    6. Модернизирована система защиты от превышения давления в реакторном пространстве – рассчитана на одновременный разрыв до 10 каналов.
    7. Ликвидирована АЗ-3 – ускоренное снижение мощности до 20% с отключением обеих турбин.
    8. Увеличено обогащение топлива с 2,0 до 2,4 % для снижения парового эффекта реактивности.
    9. В активной зоне находятся не менее 80 ДПК (ДП кластерного типа повышенной эффективности) также для снижения парового эффекта реактивности и улучшения управляемости реактора.
    10. На других РБМК вместо установки ДПК переходят (перешли) на уран-эрбиевое топливо (эрбий – выгорающий поглотитель).
    11. Вместо «СКАЛы» применяются современные вычислительные комплексы с циклом расчета не более 1 сек. и выдачей всех данных операторам БЩУ в удобоваримом виде и даже с рекомендациями и прогнозами по управлению.

    Основные организационные мероприятия:

    1. Введены общие положения безопасности АЭС (ОПБ), правила ядерной безопасности и ряд других нормативных документов.
    2. Разработано техническое обоснование безопасности реакторной установки (ТОБ РУ) и пересмотрена вся эксплуатационная документация.
    3. Введены понятия «параметр нормальной эксплуатации» и «пределы и условия безопасной эксплуатации». ОЗР в 30 стержней стал одним из пределов безопасной эксплуатации.
    4. Пуск реактора после кратковременного останова запрещен. Только после прохождения «йодной ямы».
    5. Запрещена эксплуатация реактора на мощности менее 700 МВт после снижения мощности с номинала.
    6. Запрещено включать все ГЦНы.
    7. Обязательна подготовка персонала БЩУ на полномасштабных тренажерах. Введена система лицензирования деятельности по управлению РУ и подготовки персонала БЩУ.
    8. Госатомнадзор выведен из подчинения Минэнерго.
    9. Ежегодно проводятся эксперименты по замеру основных физических параметров реактора – мощностной эффект, паровой эффект и др.

    Источник - tnenergy.livejournal.com
    Категория: Чернобыльская Зона Отчуждения | Просмотров: 110 | Добавил: Гадский-Папа | Теги: Чернобыльская Зона Отчуждения, Чернобыльская АЭС, Как взорвать реактор РБМК | Рейтинг: 0.0/0
    Всего комментариев: 0
    avatar
    Вход на сайт
    Логин:
    Пароль:
    Поиск
    Календарь
    «  Ноябрь 2018  »
    ПнВтСрЧтПтСбВс
       1234
    567891011
    12131415161718
    19202122232425
    2627282930
    Архив записей
    Облако меток
    Долг Чистое Небо припять ЧАЭС МСЧ-126 пожарники Чернобыль 26 апреля 1986 S.T.A.L.K.E.R. 2 ЧЗО 1986 Александр Посталовский пожар катастрофа авария сталкер Монолит сша россия Свобода Дегтярёв Шрам зона стрелок реактор фильм ликвидаторы сталкеры АЭС поход Александр Наумов ссср Чернобыльская АЭС Зона отчуждения авария на ЧАЭС GSC Game World film.ua S.T.A.L.K.E.R. браконьеры украина Полигон радиация нелегалы Беларусь панорамы припяти Чернобыльская Зона Отчуждения Припять до аварии самоходы Припять 2018 Внутри 4го энергоблока ЧАЭС
    Последние комментарии












    Подписка

    Enter your email address:

    Delivered by FeedBurner

    RSS

    Блог Гадского Папы - 2017 - © 2018 Используются технологии uCoz Яндекс.Метрика
    Мини-чат
    Приветствую тебя гость! Что-бы иметь более широкий доступ на сайте и скачивать файлы, советуем вам
    зарегистрироваться,
    или войти на сайт как пользователь это займет менее двух минут.Авторизация на сайте